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Partition functions in statistical mechanics, symmetric functions, and group representations
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Partition functions for noninteracting particles are known to be symmetric functions. It is shown that
powerful group-theoretical techniques can be used not only to derive these relationships, but also to signifi-
cantly simplify calculation of the partition functions for particles that carry internal quantum numbers. The
partition function is shown to be a sum of one or more group characters. The utility of character expansions in
calculating the partition functions is explored. Several examples are given to illustrate these techniques.
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I. INTRODUCTION

Although the relationship between partition functions
noninteracting quantum systems of bosons or fermions
symmetric functions commonly encountered in the gro
representation theory has been known for some time~e.g.,
see Ref.@1#! it was recently highlighted@2# as part of an
attempt to gain a deeper understanding of the foundation
the field. In particular theN-particle partition functionZN for
a noninteracting gas is a complete homogeneous symm
function of the exponentials of the single-particle energ
for bosons and an elementary symmetric function of
same for fermions~definitions and a list of some propertie
of these functions are given in Appendix A!. Such relation-
ships can be useful, for example, in one-dimensional fer
onic systems since in one space dimension interacting fe
ons can be considered as noninteracting bosons@3#. Spectral
equivalence of bosons and fermions in one-dimensional
monic potentials@4,5# and previously noted recursion rela
tions connecting partition functions with different numbe
of particles@6,7# can be shown to be consequences of t
identification.

The aim of this paper is first to provide a simple grou
theoretical proof forZN being a symmetric function and the
to expand this result to some cases of interacting parti
and to systems with both bosons and fermions~supersym-
metric systems!. In Sec. II we first provide a direct comb
natorial proof, then show how that proof follows from grou
representation theory. In that section we also show that
mixed systems of bosons and fermions partition functio
become graded symmetric functions which are the charac
of superalgebras. In Sec. III we show that the identificat
of N-particle partition functions with symmetric function
coupled with character expansion techniques significa
simplify the calculation of partition functions for particle
that carry internal quantum numbers. In Sec. IV we sh
that it is possible to utilize these techniques to calculate
partition functions for some simple interacting systems.
nally Sec. V includes a brief discussion of our results.
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II. THE RELATIONSHIP BETWEEN PARTITION
FUNCTION AND GROUP CHARACTERS

One can easily write down theN-particle partition func-
tion ZN for noninteracting particles

ZN5(
n1

(
n2

•••F)
i

xi
niGdS N2(

j
nj D , ~2.1!

as was written, e.g., in the treatment of pion multiplici
distributions in heavy-ion collisions@8#. Here xi5exp
(2bei), wheree i are the single-particle energies andd is a
Kronecker delta constraint. For bosonsni50,1, . . . ,̀ , and
for fermionsni50,1. Writing thed function as an integral

dS N2(
j

nj D 5
1

2pE0

2p

dw exp~ iNw!)
i

exp~2 iniw!,

~2.2!

one can easily perform theni sums in Eq.~2.1! to obtain

ZN5
1

2pE0

2p

dw exp~ iNw!F)
i

@11hxiexp~2 iw!#hG ,
~2.3!

whereh is 21 for bosons and11 for fermions. Comparing
Eq. ~2.3! with the generating functions given in Appendix A
Eqs.~A1! and ~A2!, one immediately identifies the genera
ing functions of the symmetric functions inside the brack
in the argument of the integral. For bosons one gets

ZN5
1

2pE0

2p

dw exp~ iNw!F(
M

hM~x!exp~2 iM w!G
5hN~x!, ~2.4!

i.e., the complete symmetric function in the variablesxi
5exp(2bei). For fermions one gets

ZN5aN~x!, ~2.5!

i.e., the elementary symmetric function in the variablesxi
5exp(2bei). Hence the grand canonical partition function
©2001 The American Physical Society05-1
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Z~m!5(
N

hN~x!exp~2bmN! ~2.6!

for bosons and

Z~m!5(
N

aN~x!exp~2bmN! ~2.7!

for fermions.~In this paper we will freely switch between th
product of the inverse temperature and the chemical po
tial, bm, and its analytic continuationif).

It is perhaps easier to understand the appearance o
symmetric functions in the partition function by calculatin
the quantityZN using group characters. Group characters
the traces of the representation matrices and can be
pressed in terms of symmetric functions@9#. We are inter-
ested in calculating the partition function for a system ofN
noninteracting particles with single-particle energiese i

ZN5Tr@d~N2N̂!exp~2bĤ !#, ~2.8!

where the number operator is

N̂5(
i 51

m

ci
†ci ~2.9!

and the Hamiltonian is

Ĥ5(
i

m

e ici
†ci . ~2.10!

In these equationsci
† andcj are the creation and annihilatio

operators for either bosons or fermions.
Representations of continuous groups can be assoc

with the Young tableaux. UsingN bosons~fermions! distrib-
uted overm states, one can construct completely symme
~antisymmetric! irreducible representations of the grou
U(m) associated with the Young tableaux withN boxes in a
row ~column!. Hence thed function in Eq.~2.8! restricts the
trace to a given irreducible representation. Since the quan
exp(2bĤ) is a group element, the partition function in E
~2.8! is simply the group character in this representati
@Technically for exp(2bĤ) to be a group element one nee
to perform a Wick rotation, i.e., analytically continue th
temperature to an imaginary variable#. In the theory of group
representations, one can write the character of any irred
ible representation in terms of the eigenvalues of the gr
element in the fundamental representation,xi5exp(2bei).
~In this representation the Hamiltonian is simply anm3m
matrix H fund with eigenvaluese i .) The characters of the rep
resentation of U(m) associated with a single row~column!
Young tableaux are the complete~elementary! symmetric
functions of the eigenvalues of the group element in the f
damental representation. It follows then thatZN is the com-
plete symmetric function in the variablesxi5exp(2bei) for
bosons and the elementary symmetric function in these v
ables for the fermions.
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Using the generating functions of the symmetric fun
tions, Eqs.~A1! and ~A2! of Appendix A, the grand canoni
cal partition functions in Eqs.~2.6! and ~2.7! can be written
in the form

Z~l!5det@11hle2bĤ#h, ~2.11!

wherel5e2m andh is 21 for bosons and11 for fermions
as before. Using the relationship

detÂ5exp@Tr log Â# ~2.12!

which is valid for any operatorÂ one can write Eq.~2.11! as

Z~l!5(
N

ZNlNexp@h Tr log~11hle2bĤ!#

5(
k

~21!k11hk
1

k
~Tr e2kbĤ!lk. ~2.13!

Equating powers ofl in both sides of the Eq.~2.13! one can
easily write down the recursion relation

NZN5 (
k51

N

kCkZN2k , ~2.14!

where Ck5(21)k11hk(1/k)(Tr e2kbĤ). Equation~2.14! is
the recursion function discussed in Ref.@6#. In the studies of
multiparticle distributions the quantitiesCk are known as
combinants@8,10,11#.

If we have a mixed system of bosons and fermions we
write the Hamiltonian to be

Ĥ5(
i 51

k

e ibi
†bi1 (

a51

m

ea f a
† f a , ~2.15!

where the boson states are labeled by the Latin indices
the fermionic states are labeled by the Greek indices.
takebi

† andbi ( f a
† and f a) to be the creation and annihilatio

operators of the bosons~fermions! and e i (ea) to be the
single-particle energies. Suppose we want to calculate
partition functionZN where thetotal number of bosonsand
fermions,N5NB1NF is fixed. Using Eqs.~2.4! and ~2.5!
one can easily write the expression

ZN5 (
n1l 5N

hn~xB!al ~xF!, ~2.16!

wherexB represent the variables exp(2bei) of bosons andxF
represent the variables exp(2bea) of fermions. The partition
function in Eq.~2.16! was introduced in Ref.@12# where it
was called the ‘‘graded homogeneous symmetric functio
of degreeN in the variables exp(2bei) and @2exp(2bea)#.
It is the character of the supergroupU(k/m) @12,13# @the
Hamiltonian, Eq.~2.15!, is an element of the correspondin
superalgebra#.
5-2
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III. PARTITION FUNCTION FOR PARTICLES WITH
INTERNAL SYMMETRIES

Whenever a quantum gas consists of noninteracting
ticles with an internal symmetry then it is possible to wr
the grand canonical partition function and then project ont
particular representation of the Lie group associated with
symmetry in consideration. Even though this approach w
first introduced in Ref.@14# in the context of statistical boot
strap models, it is in fact completely generally applicab
@15#. One writes the grand canonical partition function,Z,

Z5Tr expF2bS Ĥ2( m iQi D G , ~3.1!

whereQi are the conserved quantities of the system andm i
are the chemical potentials assigned to each of the rele
conservation laws. In order to find the partition functionZr
corresponding to a given representationr of the symmetry
group in consideration one simply expands the grand can
cal partition function in terms of the charactersx r of the
associated Lie group:

Z~m i !5(
r

1

dr
x r~m i !Zr . ~3.2!

In Eq. ~3.2!, dr is the dimension of the representation. Sin
when the group variables are set to zero the character
given representation gives the dimension of this represe
tion, x r(m i50)5dr , when all m i are set to zero Eq.~3.2!
gives the grand canonical partition function as a sum ove
the representations as it should. In fact Eqs.~2.6! and ~2.7!
can be considered as special cases of Eq.~3.2! since the
particle number is a conserved U~1! symmetry with charac-
ters exp(2iNf). Character expansions for various groups
readily available in the literature@16–18#. Such expansions
of the grand canonical partition function were utilized in
variety of contexts from understanding the role of intern
symmetries inpp̄ annihilation @19# to imposing color neu-
trality in a quark-gluon plasma@20#.

In this section we show that symmetric functions are v
useful in generating such expansions. To illustrate this le
introduce two kinds of fermions which are the spin-up a
spin-down components of a su~2! algebra which can be th
ordinary spin, or the isospin or a pseudospin. For the p
poses of fixing the notation we will call these fermions pr
tons ~with creation and annihilation operatorsf a,1

† , f b,1)
and neutrons~with creation and annihilation operato
f a,2

† , f b,2) and the symmetry isospin. We consider a dilu
gas so that the interactions between these particles ca
ignored and we assume that they sit at the same energy le
which may correspond to a mean field:

Ĥ5 (
a,s56

ea f a,s
† f a,s . ~3.3!

It is easy to write down the generators of the correspond
su~2! algebra as
06610
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T̂35
1

2 (
a

@ f a,1
† f a,12 f a,2

† f a,2#5
1

2
~N̂12N̂2!,

~3.4!

and

T̂15(
a

f a,1
† f a,25~T2!†. ~3.5!

In Eq. ~3.4!, N̂1 and N̂2 are the number of protons an
neutrons, respectively. This algebra is easy to manipulat
the uN1 ,N2& basis. However, if we wish to find the partitio
function corresponding to a particular value of isospinI, we
need to go to theuI ,mI& basis.

Note that the third component of isospinT3 is an additive,
conserved quantum number. Using Eqs.~2.1!, ~2.3!, ~2.7! we
can write the grand canonical partition function for proto
as

)
a

~11xaeif/2!5(
N1

aN1
~x!exp~ iN1f/2!, ~3.6!

and for neutrons as

)
a

~11xae2 if/2!5(
N2

aN2
~x!exp~2 iN2f/2!.

~3.7!

In writing Eqs.~3.6! and~3.7! we used the fact, suggested b
Eq. ~3.4!, that the chemical potentials for protons and ne
trons have opposite signs. Hence the total grand canon
partition function of the system is

Z5)
a

~11xaeif/2!~11xae2 if/2!

5 (
N1 ,N2

aN1
aN2

exp@ i ~N12N2!f/2#. ~3.8!

On the right side of Eq.~3.8! one recognizes the matrix ele
ment of the group element exp(iT3) in the uN1 ,N2& basis.
One can easily write down the total grand canonical partit
function as

Z5)
a

~11xa
21xa Tr U !, ~3.9!

whereU is the group element exp(ifT3) in the I 51/2 repre-
sentation:

UI 51/25S eif/2 0

0 e2 if/2D . ~3.10!

We calculate the total grand canonical partition functi
of Eq. ~3.8! using the character expansion formula of R
@17#, the results of which are summarized in Appendix
Letting t15eif/2 and t25e2 if/2 we define
5-3
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G~x,t ![)
a

~11xat !5 (
N50

`

aN~x!tN. ~3.11!

Using Eq.~B5! of Appendix B we write the total grand ca
nonical partition function of Eq.~3.8! as

S )
i 51

2

G~x,t i !D 5 (
n150

`

(
n250

n1

det~anj 1 i 2 j !x (n1 ,n2)~U !.

~3.12!

The equations in Appendix B are given forU(N). For the
case ofSU(2) we need to write characters of a given rep
sentationI. If n250, thenx (n1,0)5x I 5n1/2 . However, if n2

Þ0 thenx (n1 ,n2)5x I 5(n12n2)/2 . Hence the desired charact
expansion of the total grand canonical partition function

Z5 (
n50

`

anx I 5n/2~U !

1 (
n50

`

(
m51

n

~anam2an11am21!x I 5(n2m)/2~U !.

~3.13!

Using Eq.~3.13! one can, for example, write down the pa
tition function of the mixed system which corresponds to
total isospin zero as

ZI 50511 (
n51

`

~an
22an11an21!. ~3.14!

In these equationsan is the elementary symmetric functio
of degreen in the variablesxa5exp(2bea).

To illustrate the utility of Eq.~3.14! let us consider the
simple case of a one-dimensional harmonic oscillator po
tial for which theN-particle partition functions can be explic
itly calculated~see, for example, Ref.@21#!. Setting the zero-
point energy of the harmonic oscillator to zero~i.e. Ĥ

5\vN̂) we get

aN5xN(N21)/2)
n51

N
1

~12xn!
, ~3.15!

wherex5exp(2b\v). Substituting Eq.~3.15! into Eq.~3.14!
we obtain

ZI 50511 (
n51

`

an
2 1

(
m50

n

xm

, ~3.16!

where the factor ((xm)21 projects theI 50 state out of a
state withn proton-neutron pairs.

In the example we just considered the individual partic
transformed like the fundamental representation of the in
nal symmetry group. We next examine what happens if t
transform like another representation. Again to be spec
we consider pions, which are bosons that transform like
06610
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adjoint (I 51) representation of the isospin group. We a
sume that the energies~either the free-particle energies—i.e
we ignore the mass difference between the charged pion
the neutral pion or the mean field energies! are again the
same. Introducing the creation operatorsbi ,1

† , bi ,0
† , andbi ,2

†

for p1,p0, andp2, respectively, the Hamiltonian is

Ĥ5(
i

e i~bi ,1
† bi ,11bi ,0

† bi ,01bi ,2
† bi ,2!, ~3.17!

and the generators of the appropriateSU(2) algebra can be
written as

T̂15(
i

~bi ,0
† bi ,21bi ,1

† bi ,0!5~ T̂2!† ~3.18!

and

T̂35(
i

~bi ,1
† bi ,12bi ,2

† bi ,2!. ~3.19!

The total grand canonical partition function can again e
ily be written as

Z5)
i

~12xie
if!21~12xi !

21~12xie
2 if!21,

~3.20!

wherexi5exp(2bei). Note that the factor 1/2 in Eq.~3.4! is
missing in Eq.~3.19! since the additive quantum numberT3
is 61/2 for the nucleons, but61 or 0 for pions. This also
leads the lack of 1/2 in the exponentials multiplying t
chemical potential in Eq.~3.20!. Indeed the total grand ca
nonical partition function for pions can be written as

Z5detF)
i

@12xiUI 51#21G , ~3.21!

where the determinant is taken in the isospin space andUI 51
is the matrix exp(ifT3) in the adjoint (I 51) representation:

UI 515S eif 0 0

0 1 0

0 0 e2 if
D . ~3.22!

To calculate the character expansion we proceed as be
Again using the eigenvalues of the isospin in thefundamen-
tal representation,t15eif/2 and t25e2 if/2, we define

G~x,t ![)
i

~12xi t
2!215 (

N50

`

AN~x!tN. ~3.23!

It follows from Eq. ~A1! of Appendix A thatAN50 for odd
N, and AN5hN/2 for even N. Following the same steps a
before we write

Z5F)
i

~12xi !
21G(

n1
(
n2

det~Anj 1 i 2 j !x (n1 ,n2)~U !.

~3.24!
5-4
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Going from U(2) to SU(2) and following similar steps a
those leading to Eq.~3.14! we can write down the partition
function of the mixed system which corresponds to the to
isospin zero as

ZI 505F)
i

~12xi !
21GF11 (

n51

`

~hn
22hn11!G .

~3.25!

One may need to calculate the total partition function o
mixed system of nucleons and pions for a particular value
isospin. To do so we can proceed in a similar way. We s
with the total grand canonical partition function:

Z5F)
a

~11xat1!~11xat2!G
3F)

i
~12xi t1

2!21~12x1!21~12xi t2
2!21G .

~3.26!

Defining the series

F)
a

~11xat !GF)
i

~12xi t
2!21G5(

N
BN~xa ,xi !t

N

~3.27!

we find that

BN~xa ,xi !5 (
N5n1m

an~xa!Hm~xi !, ~3.28!

where H2n(xi)5hn(xi) and H2n11(xi)50,n51,2,3, . . . .
Using similar steps as those leading to Eq.~3.24! we get

Z5F)
i

~12xi !
21G(

n1
(
n2

det~Bnj 1 i 2 j !x (n1 ,n2)~U !.

~3.29!

It is straightforward if not tedious to generalize the d
cussion in this section to higher internal symmetries us
the character expansion formulas in Appendix B. F
SU(N), N>2, there areN21 mutually commuting opera
tors ~elements of the Cartan subalgebra!. These can be ex
pressed in terms of number operators. Each such opera
then associated with the analytic continuation of a chem
potential. From the resulting group element one follows
same procedure we just outlined.

IV. PARTITION FUNCTIONS FOR INTERACTING
SYSTEMS

In some cases it is possible to utilize the techniques
cussed in the previous sections to the investigation of so
interacting systems. Typically if the HamiltonianĤ can be
written as a sum of the generators of an algebra, t
exp(2bĤ) is an element of the associated group and its tr
~character! can be calculated by powerful group-theoretic
methods. To illustrate this we will consider the Hamiltoni
06610
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representing a two-level system, where each level ha
K-fold degeneracy, given by

Ĥ5
1

2 (
k51

K

@v~ f 1,k
† f 1,k2 f 1,k

† f 1,k!1t~ f 1,k
† f 2,k1 f 2,k

† f 1,k!#.

~4.1!

In Eq. ~4.1!, 1 and 2 represent two different layers and t
degeneracy of each level is indicated by the indexk. An
example of such a system would be the single-part
Hamiltonian of a bilayer quantum Hall system@22#. In this
case one works in a spherical geometry and thez projection
of the orbital angular momentum of each electron in t
lowest Landau level,k, changes from2Nf/2 to Nf/2, where
Nf is the number of flux quanta penetrating the sphere. T
coefficientsv andt are bias voltage and the tunneling amp
tude, respectively.

To find the partition function we first diagonalize th
Hamiltonian by a Bogoliubov transformation@23#:

F1,k5~cosu! f 1,k1~sinu! f 2,k ,

F2,k52~sinu! f 1,k1~cosu! f 2,k . ~4.2!

Note thatFi ,k ,i 51,2 such defined still satisfy the fermio
anticommutation relations. In addition, under the transform
tion in Eq. ~4.2! the total number of particles is unchange
i.e.,

F1,k
† F2,k1F2,k

† F1,k5 f 1,k
† f 1,k1 f 2,k

† f 2,k . ~4.3!

By choosing

cosu5
v

Av21t2
,

sinu5
t

Av21t2
, ~4.4!

and

e5Av21t2, ~4.5!

one can write down the Hamiltonian in Eq.~4.1! in terms of
the quasifermion operators:

Ĥ5
1

2 (
k51

K

e@F1,k
† F1,k2F2,k

† F2,k#. ~4.6!

The total partition function can easily be computed asF1,k
†

andF2,k
† create independent particles with energiese/2 and

2e/2, respectively. The total possible number of both t
‘‘upper-level’’ and the ‘‘lower-level’’ particles areK. We get

Z5~11x1!K~11x2!K, ~4.7!

where x1[exp(2be/2) and x2[exp(1be/2). The partition
function for a fixed number of particles can also be simila
calculated. The partition function forn ‘‘upper-level’’ par-
5-5
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ticles is given by applying Eq.~2.5! to K degenerate levels
with energiese/2. ~Note that in calculating the elementa
symmetric function thek index in cannot repeat itself.! Since

~11x1l!K5(
n

S K

n D x1
nln ~4.8!

with

S K

n D 5
K!

n! ~K2n!!
~4.9!

we get

Zn
15S K

n D e2nbe/2. ~4.10!

Similarly for the ‘‘lower-level’’ particles we get

Zn
25S K

n D e1nbe/2. ~4.11!

Hence theN-particle partition function is given by

ZN5 (
m1n5N

Zn
1Zn

2 . ~4.12!

To illustrate the dependence of theN-particle partition func-
tion on the variablesx1 andx2 we calculateZN for the lowest
values ofN. Even thoughx1 and x2 are inverses of each
other we will write their product explicitly to illustrate th
underlying structure. One gets

Z15K~x11x2!, ~4.13!

Z25
K~K21!

2
~x1

21x2
21x1x2!1

K~K11!

2
~x1x2!,

~4.14!

Z35
K~K21!~K22!

3!
~x1

31x1
2x21x1x2

21x2
3!

1
K~K11!~K21!

3
~x1x2!~x11x2!, ~4.15!

Z45
K~K21!~K22!~K23!

4!
~x1

41x1
3x21x1

2x2
21x1x2

31x2
4!

1
K~K11!~K21!~K22!

8
~x1x2!~x1

21x2
21x1x2!

1
K2~K221!

12
~x1

2x2
2!, ~4.16!

and so on. In Eqs.~4.13! through ~4.16! one notices the
appearance of both complete and elementary symm
functions ofx1 andx2.

There is a much faster way to calculate these partit
functions. Noting that the operators
06610
ric

n

Ĵ05
1

2 (
k51

K

~ f 1,k
† f 1,k2 f 2,k

† f 2,k!, ~4.17!

and

Ĵ15 f 1,k
† f 2,k5~ Ĵ2!†, ~4.18!

generate an SU~2! algebra one can write the Hamiltonian
Eq. ~4.1! as an element of this algebra

Ĥ5v Ĵ01
t

2
~ Ĵ11 Ĵ2!. ~4.19!

As a result exp(2bĤ) is an element of the correspondin
SU~2! group and the partition function is the sum of trac
~characters! of all possible representations of this group e
ment. In the fundamental~two-dimensional or spinor! repre-
sentation this group element takes the form

e2bĤ5S e2be/2 0

0 e1be/2D 5S x1 0

0 x2
D . ~4.20!

We want to express the total partition function of Eq.~4.7! in
terms of the characters of this SU~2! algebra. Noting

~11t !K5(
n

S K

n D tn ~4.21!

and Eq.~B5! of the Appendix B we can write Eq.~4.7! as

Z5~11x1!K~11x2!K

5 (
n150

(
n250

detF S K

nj1 i 2 j D Gx (n1 ,n2)~e2bĤ!.

~4.22!

Using N particles one can construct those representation
the SU~2! group in Eqs.~4.17! and ~4.18! where N5n1
1n2. The easiest way to see that is to consider the gr
canonical partition function

Z5~11lx1!K~11lx2!K

5 (
n150

(
n250

detF S K

nj1 i 2 j D Gdet@hnj 1 i 2 j~lx1 ,lx2!#.

~4.23!

Since the complete symmetric function satisfies the condi

hn~lx1 ,lx2!5lnhn~x1 ,x2!, ~4.24!

one can write the character in Eq.~4.23! as

det@hnj 1 i 2 j~lx1 ,lx2!#5ln11n2det@hnj 1 i 2 j~x1 ,x2!#

~4.25!

and the proof follows.
For N51 using Eq. ~B1! one has x (1,0)(e

2bĤ)
5h1(x1 ,x2)5x11x2 with the coefficient
5-6
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S K

1 D 5K, ~4.26!

i.e., the result given in Eq.~4.13!. For N52, there are two
possibilities:n152,n250 andn151, n251. To the expan-
sion in Eq.~4.22! these contribute the terms

S K

2 D h2~x1 ,x2!1detS K 1

K~K21!

2
KD

3@h1
2~x1 ,x2!2h2~x1 ,x2!#, ~4.27!

which, after evaluating the determinants, gives Eq.~4.14!.
One can similarly calculate the coefficients of then11n2
53 and 4 terms in Eq.~4.22! to obtain Eqs.~4.15! and
~4.16!, respectively.

V. CONCLUSIONS

In this paper we showed that various partition functio
for free ~either noninteracting or those that interact throu
one-body Hamiltonians! particles can be written as a sum
one or more group characters. This result is not surpris
since the partition function, being a trace, is invariant un
the exchange of single-particle energies, hence it can be w
ten in terms of either elementary or complete symme
functions which form a complete basis for any function th
is symmetric under the exchange of its variables. The res
ing expressions are, however, very useful to simplify
calculations of the partition functions for particles that ca
internal quantum numbers.

One should emphasize that our techniques, being com
natorial in nature, can be used to describe particle multip
ity distributions even in those situations where one does
start from a partition function or even when temperature
not well defined. Such applications range from pion mu
plicity distributions in heavy-ion collisions@8# ~where a tem-
perature can be defined for a system! to fermion-pair produc-
tion by a time-varying electric field@24,25# ~where the
concept of temperature is not introduced!.
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APPENDIX A: SYMMETRIC FUNCTIONS

The complete homogeneous symmetric function,hn(x),
of degreen in the argumentsxi ,i 51, . . . ,N, is defined as
the sum of the products of the variablesxi , takingn of them
06610
s

g
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it-
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at a time. For three variablesx1 ,x2 ,x3, the first few complete
homogeneous symmetric functions are

h1~x!5x11x21x3 ,

h2~x!5x1
21x2

21x3
21x1x21x1x31x2x3 ,

h3~x!5(
i

xi
31(

iÞ j
xi

2xj1x1x2x3 .

One can write the generating function forhn as

1

)
i 51

N

~12xiz!

5(
n

hn~x!zn. ~A1!

If x1 ,x2 ,x3 are the eigenvalues of a matrixB, the symmetric
functions can be written in terms of traces of powers ofB,
e.g.,

h1~x!5Tr B,

h2~x!5
1

2
@Tr B21~Tr B!2#,

and so on.
The elementary symmetric functions,an(x), are defined

in a similar way except that noxi can be repeated in an
product. Again for three variablesx1 ,x2 ,x3, the first few
elementary symmetric functions are

a15h1 ,

a25x1x21x1x31x2x3 ,

a35x1x2x3 .

One takesan50 if n.N and a05h051. The generating
function for an is given by

)
i 51

N

~12xiz!5(
n

~21!nan~x!zn. ~A2!

Note that, since the generating functions in Eqs.~A1! and
~A2! are inverses of each other one can writehk in terms of
ai ,i 51, . . . ,k and vice versa. If one takesxi ,i 51, . . . ,N to
be eigenvalues of anN3N matrix A, thenaN(x)5detA and
aN11(x)505aN125•••.

APPENDIX B: CHARACTER EXPANSION FORMULAS

In this appendix we summarize the character expans
formulas of Refs.@16,17# and @18#. The representations o
the U(N) group are labeled by a partition intoN parts:
(n1 ,n2 , . . . ,nN) wheren1>n2>•••>nN ~see, for example,
Ref. @9#!. We denote the eigenvalues of the group elemenU
in the fundamental representation byt1 ,t2 , . . . ,tN . The
character~trace of the representation matrix! of the irreduc-
ible representation corresponding to the partiti
(n1 ,n2 , . . . ,nN) of non-negative integers is given by
5-7
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x (n1 ,n2 , . . . ,nN)~U !5det~hnj 1 i 2 j !, ~B1!

where hn is the complete symmetric function in the arg
mentst1 , . . . ,tN of degreen. ~For a review of its properties
see Appendix A.! In these equations the arguments of t
determinants indicate the (i j )-th element of the matrix the
determinant of which is calculated.

To obtain the character expansion of Ref.@17# consider
the power series expansion

G~x,t !5(
n

An~x!tn, ~B2!

wherex stands for all the parameters needed to specify
coefficientsAn . We assume that this series is convergent
utu51. GivenN different t ’s which we take eigenvalues o
the matrixU: t1 , . . . ,tN , we write down the character ex
pansion@Eq. ~2.17! of Ref. @17## usingN copies of Eq.~B2!

S )
i 51

N

G~x,t i !D 5 (
m150

(
m250

(
mN2150

(
nN

det~Anj 1 i 2 j !

3~detU !nNx (l 1 ,l 2 , . . . ,l N)~U !, ~B3!
m
ic

,

06610
e
r

where

mj5nj2nj 11 , j 51, . . . ,N21. ~B4!

If the sum overn in the expression Eq.~B2! we started with
is restricted to the non-negative values ofn ~i.e.,An50 when
n,0), thennN is non-negative and we can absorb the te
(detU)nN into the character to obtain

S )
i 51

N

G~x,t i !D
5 (

n150
(

n250
••• (

nN50
det~Anj 1 i 2 j !x (n1 ,n2 , . . . ,nN)~U !.

~B5!

Note that the summation in Eq.~B5! is over all irreducible
representations of U(N), but in Eq. ~B4! it is restricted to
those representations where the number of boxes in the
row of the Young tableau is zeroand an additional summa-
tion overnN , which, in general, can take both positive an
negative values. For further details see Ref.@17#.
ev.
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