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Partition functions for noninteracting particles are known to be symmetric functions. It is shown that
powerful group-theoretical techniques can be used not only to derive these relationships, but also to signifi-
cantly simplify calculation of the partition functions for particles that carry internal quantum numbers. The
partition function is shown to be a sum of one or more group characters. The utility of character expansions in
calculating the partition functions is explored. Several examples are given to illustrate these techniques.
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I. INTRODUCTION Il. THE RELATIONSHIP BETWEEN PARTITION
FUNCTION AND GROUP CHARACTERS
Although the relationship between partition functions of
noninteracting quantum systems of bosons or fermions angO
symmetric functions commonly encountered in the group
representation theory has been known for some ftieng.,
see Ref[1]) it was recently highlighted2] as part of an =2 > [H X"
attempt to gain a deeper understanding of the foundations of A :
the field. In particular thé&-particle partition functiorzy for
a noninteracting gas is a complete homogeneous symmetr
function of the exponentials of the single-particle energie
for bosons and an elementary symmetric function of th
same for fermiongdefinitions and a list of some properties
of these functions are given in AppendiX.ASuch relation-
ships can be useful, for example, in one-dimensional fermi- 1 (on
onic systems since in one space dimension interacting fermi- 5( NED nj) = 2—f de exp(iNg) [ ] exp(—in;e),
ons can be considered as noninteracting bof8h<sSpectral J mJo !
equivalence of bosons and fermions in one-dimensional har- 2.2
monic potential§4,5] and previously noted recursion rela-
tions connecting partition functions with different numbers
of particles[6,7] can be shown to be consequences of this 1 (2n
identification. ZNz_f deexp(iNe)| [T [1+ zxexp—i@)]7|,
The aim of this paper is first to provide a simple group- 2w Jo [
theoretical proof foZy being a symmetric function and then (2.3
to expand this result to some cases of interacting particles ) ) )
and to systems with both bosons and fermi¢sspersym- Wheren is —1 for bosons and-1 for fermions. Comparing
metric systems In Sec. Il we first provide a direct combi- Ed-(2-3) with the generating functions given in Appendix A,
natorial proof, then show how that proof follows from group EdS: (A1) and(A2), one immediately identifies the generat-
representation theory. In that section we also show that fof?d functions of the symmetric functions inside the brackets
mixed systems of bosons and fermions partition functiond” the argument of the integral. For bosons one gets
become graded symmetric functions which are the characters
of superalgebras. In Sec. Ill we show that the identification
of N-particle partition functions with symmetric functions
coupled with character expansion techniques significantly
simplify the calculation of partition functions for particles =hn(x), (2.9
that carry internal quantum numbers. In Sec. IV we show
that it is possible to utilize these techniques to calculate thée., the complete symmetric function in the variables
partition functions for some simple interacting systems. Fi-=exp(—Be). For fermions one gets
nally Sec. V includes a brief discussion of our results.

One can easily write down th-particle partition func-
n Zy for noninteracting particles

5<N—E_ nj), (2.1
]

S was written, e.g., in the treatment of pion multiplicity
istributions in heavy-ion collisiond8]. Here x;=exp
S(—,Bei), wheree; are the single-particle energies adds a
&ronecker delta constraint. For bosons=0,1, ... », and
for fermionsn;=0,1. Writing thed function as an integral

one can easily perform the sums in Eq(2.1) to obtain

1 (2=
ZN:EL do exp(iNg) % hy(X)exp —iM ¢)

Zy=an(x), (2.9
*Electronic address: baha@nucth.physics.wisc.edu i.e., the elementary symmetric function in the variabes
"Permanent address. =exp(—B¢). Hence the grand canonical partition function is

1063-651X/2001/646)/06610%8)/$20.00 64 066105-1 ©2001 The American Physical Society



A. B. BALANTEKIN PHYSICAL REVIEW E 64 066105

Using the generating functions of the symmetric func-
Z(M)Z% hn(x)exp(— BuN) (2.6 tions, Egs(A1) and(A2) of Appendix A, the grand canoni-
cal partition functions in Eq92.6) and(2.7) can be written

for bosons and in the form

Z(\)=def1+ pre A7, (2.10)
Z(w)=, an(x)exi ~ fuN) 2.7 7

whereh=e # and» is —1 for bosons and- 1 for fermions

for fermions.(In this paper we will freely switch between the 2S Pefore. Using the relationship

product of the inverse temperature and the chemical poten- . .

tial, Bu, and its analytic continuatioiy). detA=exf TrlogA] (212
It is perhaps easier to understand the appearance of the

symmetric functions in the partition function by calculating which is valid for any operatoh one can write Eq(2.11) as

the quantityZy using group characters. Group characters are

the traces of the representation matrices and can be ex- N P

pressed in terms of symmetric functiof@]. We are inter- Z()\)z% Zy\Texd 7 Trlog(1+ e 1) ]

ested in calculating the partition function for a systenNof

noninteracting particles with single-particle energigs :; (- 1)k+17]k%(_ﬁ & kB \ K (213

Zy=Tr 8(N—N)exp(— BH)], (2.9

Equating powers ok in both sides of the Eq2.13 one can

where the number operator is easily write down the recursion relation

N

m
L
N=2, cle 29 NZy= 3, KCZy -, (2.14

and the Hamiltonian is -

where C,=(—1)¥"19*(1/k)(Tre ¥PH). Equation(2.14) is
m the recursion function discussed in REf]. In the studies of

I:|=2 eiciTci. (2.10 multiparticle distributions the quantitie€, are known as
! combinantg8,10,11.

4 ) o If we have a mixed system of bosons and fermions we can
In these equations; andc; are the creation and annihilation \yrite the Hamiltonian to be

operators for either bosons or fermions.
Representations of continuous groups can be associated k m
with the Young tableaux. Usiny bosons(fermiong distrib- A=Y eb'b+ > efrf,, (2.15
uted overm states, one can construct completely symmetric i=1 a=1
(antisymmetri¢ irreducible representations of the group
U(m) associated with the Young tableaux wikhboxes in a  where the boson states are labeled by the Latin indices and
row (column. Hence thes function in Eq.(2.8) restricts the  the fermionic states are labeled by the Greek indices. We
trace to a given irreducible representation. Since the quantitiakeb! andb; (f! andf,) to be the creation and annihilation

exp(—BH) is a group element, the partition function in Eq. OPerators of the bosondermions and ¢; (e,) to be the
(2.8) is simply the group character in this representation.5'”9.|‘?'pa”'de_ energies. Suppose we want to calculate the
[Technically for exp¢BH) to be a group element one needs partlyon fun_ctlonZN Wher_e thetota! number of bosonand

to perform a Wick rotation, i.e., analytically continue the fermlons,N—.NBJr.N,: Is fixed. U?'”g Eqs(2.4) and (2.9
temperature to an imaginary variablén the theory of group one can easily write the expression

representations, one can write the character of any irreduc-

ible representation in terms of the eigenvalues of the group Zy= > ho(xg)a (Xg), (2.16
element in the fundamental representati@gps exp(— Be). n+/=N

(In this representation the Hamiltonian is simply srx m

matrix Hg,ng With eigenvalues; .) The characters of the rep- wherexg represent the variables expBe) of bosons anc¢
resentation of Uf) associated with a single royzcolumn  represent the variables expBe,) of fermions. The partition
Young tableaux are the completelementary symmetric  function in Eq.(2.16 was introduced in Ref.12] where it
functions of the eigenvalues of the group element in the funwas called the “graded homogeneous symmetric function”
damental representation. It follows then tat is the com-  of degreeN in the variables exp{Be) and[ — exp(—Be,)].
plete symmetric function in the variables=exp(—B¢) for It is the character of the supergrowp(k/m) [12,13 [the
bosons and the elementary symmetric function in these variHamiltonian, Eq.(2.15), is an element of the corresponding
ables for the fermions. superalgebrh
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IIl. PARTITION FUNCTION FOR PARTICLES WITH 1 1.
INTERNAL SYMMETRIES To=5 D[l D, 1= S(N.=RL),
o

Whenever a quantum gas consists of noninteracting par- (3.9

ticles with an internal symmetry then it is possible to write

the grand canonical partition function and then project onto &nd

particular representation of the Lie group associated with the

symmetry in consideration. Even though this approach was T ZE f1f, =T 3.5

first introduced in Ref[14] in the context of statistical boot- oL et e e '

strap models, it is in fact completely generally applicable

[15]. One writes the grand canonical partition functidh, In Eq. (3.4), N+ and N_ are the number of protons and
neutrons, respectively. This algebra is easy to manipulate in

} 3.1) the|N, ,N_) basis. However, if we wish to find the partition

' ' function corresponding to a particular value of isoshiwe
need to go to thel,m;) basis.

whereQ; are the conserved quantities of the system apd Note that the third component of isospig is an additive,

are the chemical potentials assigned to each of the relevagbnserved quantum number. Using E@s]), (2.3), (2.7) we

conservation laws. In order to find the partition functidn  can write the grand canonical partition function for protons

corresponding to a given representationf the symmetry as

group in consideration one simply expands the grand canoni-

cal partition function in terms of the characteys of the

associated Lie group: H (

Z=Trexp[—ﬁ(ﬂ—2 ©iQ;

1+x,6e%2)= %‘, ay, (X)exp(iN, ¢/2), (3.6

a

1 and for neutrons as
Z(w) =2 g xe(m)Zs (3.2
r

—ipI2y _ i
In EqQ.(3.2), d, is the dimension of the representation. Since 1;[ (1Fx.e ) % an_(X)exp —IN-¢/2).
when the group variables are set to zero the character of a (3.7
given representation gives the dimension of this representa-
tion, x,(x;=0)=d,, when allu; are set to zero Eq3.2) In writing Egs.(3.6) and(3.7) we used the fact, suggested by
gives the grand canonical partition function as a sum over alEg. (3.4), that the chemical potentials for protons and neu-
the representations as it should. In fact E@s6) and (2.7) trons have opposite signs. Hence the total grand canonical
can be considered as special cases of B since the partition function of the system is
particle number is a conserved1) symmetry with charac-
ters exp(-iN¢). Character expansions for various groups are
readily available in the literaturel6-18. Such expansions
of the grand canonical partition function were utilized in a
variety of contexts from understanding the role of internal
symmetries inpp annihilation[19] to imposing color neu-
trality in a quark-gluon plasmg20].

In this section we show that symmetric functions are veryOn the right side of Eq(3.8) one recognizes the matrix ele-
useful in generating such expansions. To illustrate this let usent of the group element exp§) in the [N, ,N_) basis.
introduce two kinds of fermions which are the spin-up andOne can easily write down the total grand canonical partition
spin-down components of a @) algebra which can be the function as
ordinary spin, or the isospin or a pseudospin. For the pur-
poses of fixing the notation we will call these fermions pro-
tons (with creation and annihilation operatof%m f54)
and neutrons(with creation and annihilation operators
f1,_.f5-) and the symmetry isospin. We consider a dilutewhereU is the group element exigTs) in the | = 1/2 repre-
gas so that the interactions between these particles can kentation:
ignored and we assume that they sit at the same energy levels

Z=11 (1+x,€9?)(1+x,e7'%?)

=N2N ay, ay_exfi(N,—N_)¢/2]. (3.8

z=]1 (@+x3+x, Tru), (3.9

which may correspond to a mean field: gd2
Uj—1= 0 e 92| (3.10
A= X eflofao (33 | y .
a,o=* o We calculate the total grand canonical partition function

of Eq. (3.8 using the character expansion formula of Ref.
It is easy to write down the generators of the corresponding17], the results of which are summarized in Appendix B.
su2) algebra as Letting t;=¢€'*? andt,=e %2 we define
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* adjoint (1=1) representation of the isospin group. We as-
G(x,t)EH (1+x,t)= E an(x)tN. (3.11 sume that the energiésither the free-particle energies—i.e.,

@ - we ignore the mass difference between the charged pion and
the neutral pion or the mean field energime again the
same Introducmg the creation operatbfsH bI 0> andb{,
for =", w0, and ™, respectively, the Hamiltonian is

Using Eq.(B5) of Appendix B we write the total grand ca-
nonical partition function of Eq(3.8) as

2 ®© ny
(iHlG(thi)) nlE_ nzz_ detan,+i- ) X(n, ny(Y)- A=> e(bf by . +bihiotbl b ), (317

(3.12

The equations in Appendix B are given far(N). For the
case ofSU(2) we need to write characters of a given repre-
sentationl. If n,=0, thenx(, 0= xi=n,2- However, ifn,

and the generators of the appropri&€(2) algebra can be
written as

t t
#0 thenx(n, n,)=Xi=(n,-nyr2- Hence the desired character E (bl gy~ +b] b ) =(T_) (3.18
expansion of the total grand canonical partition function is
and
=2 anXi-ne(U) .
= “nXi=ni2 =3 (bl by~ by ). (3.19
o n
+ E E (8n@m—an+18m-1) X1 = (n-my2(U). The total grand canonical partition function can again eas-
=0 m=1

ily be written as
(3.13
Using Eq.(3.13 one can, for example, write down the par-

tition function of the mixed system which corresponds to the
total isospin zero as

z=]] 1-xe?)"(1-x) H1-xe 1,
(3.20

wherex; = exp(—Be¢). Note that the factor 1/2 in Eq43.4) is
missing in Eq.(3.19 since the additive quantum numbgs

is =1/2 for the nucleons, but1 or O for pions. This also
leads the lack of 1/2 in the exponentials multiplying the
chemical potential in Eq(3.20. Indeed the total grand ca-
nonical partition function for pions can be written as

0

z.:o=1+n§1 (a2- (3.14

an+1an—1)-

In these equationg,, is the elementary symmetric function
of degreen in the variables<,= exp(—Be,).

To illustrate the utility of Eq.(3.14) let us consider the
simple case of a one-dimensional harmonic oscillator poten-
tial for which theN-particle partition functions can be explic-
itly calculated(see, for example, Reff21]). Setting the zero-

point energy of the harmonic oscillator to zetoe. H

Z=de{H [1-xU,_;] " (3.21)

where the determinant is taken in the isospin spacdhnd
is the matrix exp()Ts) in the adjoint (=1) representation:

=fwN) we get
v e€® 0 0
ap=xNN- 1)/21‘[ (3.19 U_,={ 0 1 0 (3.22
n=1(1=X")’ 0 0 el?

wherex= exp(— Bfiw). Substituting Eq(3.15) into Eq.(3.14)
we obtain

[

1
zZ,_ o—1+2 al——o,

n=1
2 Xm

(3.16

where the factor ¥x,,) "1 projects thel =0 state out of a

state withn proton-neutron pairs.

To calculate the character expansion we proceed as before.
Again using the eigenvalues of the isospin in thedamen-
tal representatiort;=e'#? andt,=e ¥ we define

©

G(x,t)= H(l xit2) 2

NOON.

(3.23

It follows from Eq. (A1) of Appendix A thatAy=0 for odd
N, and Ay=hy,, for evenN. Following the same steps as

In the example we just considered the individual particleoefore we write
transformed like the fundamental representation of the inter-
nal symmetry group. We next examine what happens if they
transform like another representation. Again to be specific
we consider pions, which are bosons that transform like the

[H (1-x)" 1}2 > detAn +i-)X(nynp (V)
nl n2
(3.29
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Going from U(2) to SU(2) and following similar steps as representing a two-level system, where each level has a
those leading to Eq.3.14) we can write down the partition K-fold degeneracy, given by

function of the mixed system which corresponds to the total
isospin zero as

K
k§=: 1kf1,k_fI,kfl,k)H(fI,kfz,kJrf;kfl,k)]-

1+ 2 (hf=hy.p)|. (4.2)

(3.29 In Eqg. (4.1), 1 and 2 represent two different layers and the
degeneracy of each level is indicated by the indeXAn
One may need to calculate the total partition function of aexample of such a system would be the single-particle
mixed system of nucleons and pions for a particular value oHamiltonian of a bilayer quantum Hall systd®2]. In this
isospin. To do so we can proceed in a similar way. We startase one works in a spherical geometry andzlpeojection
with the total grand canonical partition function: of the orbital angular momentum of each electron in the
lowest Landau levek, changes from-N /2 to N4/2, where
N, is the number of flux quanta penetrating the sphere. The
coefficientsy andt are bias voltage and the tunneling ampli-
tude, respectively.
N R O A | To find the partition function we first diagonalize the
x 1_.[ (1=t (1=x0) (1= xit) } Hamiltonian by a Bogoliubov transformatig@3]:

I)
I\.)I =

Zi—o=

IT a-x)t

Z=|TT (1+x,t)(1+x,t,)

(3.26 F1=(cosO)fy,+(sin6)fyy,
Defining the series F o= — (SIN0) 1+ (COSO) f 5. 4.2
IT (1+x,t) H 1— xit2)1}=z Bn(X,,,X)t\ Note thatF; ,,i=1,2 such defined still satisfy the fermion
a i N anticommutation relations. In addition, under the transforma-

(3.27  tion in Eq.(4.2) the total number of particles is unchanged,

we find that €.,
FI,sz,k+ F]ZL,kFl,kzfI,kfl,k—"f;,ku,k- 4.3
Bu(Xe X)= > an(X) Hm(X)), (3.289 .
N=n+m By choosing
where H,n(X)=h,(x;) and Hyn41(X)=0n=123.... v
Using similar steps as those leading to E8124) we get cosf= ,
g P g to E324 we g Ny
=1L 1=x) 72 X detBr 4 )X, (V). ¢
v sinf= ———, 4.4
(3.29 = 44

It is straightforward if not tedious to generalize the dis- 5
cussion in this section to higher internal symmetries using
the character expansion formulas in Appendix B. For e=u2+1t2, (4.5
SU(N), N=2, there areN—1 mutually commuting opera-
tors (elements of the Cartan subalgebrahese can be ex- one can write down the Hamiltonian in E@t.1) in terms of
pressed in terms of number operators. Each such operatortise quasifermion operators:
then associated with the analytic continuation of a chemical

potential. From the resulting group element one follows the 1 X ‘
same procedure we just outlined. =5 2 e[ F1F 1~ FaxFail- (4.6
IV. PARTITION FUNCTIONS FOR INTERACTING The total partition function can easily be computedrag
SYSTEMS andF}, create independent particles with energi¢® and

In some cases it is possible to utilize the techniques dis €/2: respectively. The total possible number of both the
cussed in the previous sections to the investigation of somé!PPer-level” and the “lower-level” particles ar&. We get
interacting systems. Typically if the Hamiltonidth can be Z=(1+x)K(1+x)K, 4.7)
written as a sum of the generators of an algebra, then

exp(—BH) is an element of the associated group and its tracevhere x, =exp(— B€/2) and x,=exp(+Be/2). The partition
(character can be calculated by powerful group-theoreticalfunction for a fixed number of particles can also be similarly
methods. To illustrate this we will consider the Hamiltonian calculated. The partition function far “upper-level” par-
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ticles is given by applying Eq.2.5) to K degenerate levels

with energiese/2. (Note that in calculating the elementary

symmetric function thé index in cannot repeat itselfSince

K
(1+x0)K=>] (n)xw (4.9
n
with
K K!
n/ nl(K—n)! (4.9
we get
K
Zh= . g nBel2, (4.10
Similarly for the “lower-level” particles we get
K
Z, = . etnBe2, (4.10
Hence theN-particle partition function is given by
Zv= > Ziz,. (4.12
m+n=N

To illustrate the dependence of theparticle partition func-
tion on the variableg; andx, we calculateZ, for the lowest
values ofN. Even thoughx; and x, are inverses of each
other we will write their product explicitly to illustrate the
underlying structure. One gets
Z;=K(X1+Xz), (4.13
K(K+1)
T(Xlxz),

(4.14

K(K—1
22:¥(x§+x§+xlx2)+
K(K=1)(K-2)
. 3!

K(K+1)(K—=1
+$(X1X2)(X1+X2),

OG+X3%,+ X X5+ X3)

(4.195

K(K=1)(K—2)(K—=3) 4
(X l+ x1x2+xlx2+x1x2+ X5)

4= 41
K(K+1)(K=1)(K—-2
( i 8 B )(Xlxz)(X§+X§+X1X2)
K?(K?—1)
+ T(xfxg), (416)

and so on. In Egs(4.13 through (4.16) one notices the

PHYSICAL REVIEW E 64 066105

~ 1
JO:E (fI,kflyk_ f;kf 2k (4.17

and

j+:f1,kf2,k:(j—)1—- (418

generate an S(2) algebra one can write the Hamiltonian in
Eqg. (4.1) as an element of this algebra

(4.19

As a result expf,BH) is an element of the corresponding
SU(2) group and the partition function is the sum of traces
(charactersof all possible representations of this group ele-
ment. In the fundament&two-dimensional or spingrepre-
sentation this group element takes the form

e B2 o x; 0
0 e+ﬁe/2 = 0 X,/ (42@

2

We want to express the total partition function of E4}.7) in
terms of the characters of this 8) algebra. Noting

K
(1+t)K=; (n)t”

and Eq.(B5) of the Appendix B we can write Ed4.7) as

(4.29

Z=(1+x) (1+xp)K

-3 3 el

n1=0 ny,=0

_Bﬂ
n +| J X(nl,nz)(e )

(4.22

Using N particles one can construct those representations of
the SU2) group in Egs.(4.17) and (4.18 where N=n;
+n,. The easiest way to see that is to consider the grand
canonical partition function

Z=(1+Ax) (1+rxp)K

defhy +i-j(Axq, M%) ],

nj+i—j
(4.23
Since the complete symmetric function satisfies the condition
hn(AX1,A%2) =X"h(X1,X5), (4.29

one can write the character in E@.23 as

de[hnjﬂfj()\xla)\xz)]:)\n1+n2de(hnj+ifj(xlvxz)]
(4.25

appearance of both complete and elementary symmetric

functions ofx; andx,.

and the proof follows.

There is a much faster way to calculate these partition For N=1 wusing Eq. (B1) one has y( o€ pH )

functions. Noting that the operators

=hy(x1,X5) =X;+ X, with the coefficient
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K at a time. For three variables,x,, Xz, the first few complete
1 =K, (4.26  homogeneous symmetric functions are

. . . h1(X) =Xg+Xo+ X3,
i.e., the result given in Eq4.13. For N=2, there are two

possibilities:n; =2,n,=0 andn;=1, n,=1. To the expan- ho(X) = X2+ X3+ X3+ X1 Xp + X1 Xg+ XpX3,
sion in Eq.(4.22 these contribute the terms

K K 1 h3(x)=2i X‘3+§j X7X;j+ X1 XoX3.

2 One can write the generating function flof as
X[h2(Xq,X0) — ha(Xq,%2) ], 4.2 1
[ 1( 1 2) 2( 1 2)] ( D N :; hn(X)Zn. (Al)
which, after evaluating the determinants, gives Eql14). H (1—x%;2)
=1

One can similarly calculate the coefficients of thetn,
=3 and 4 terms in Eq(4.22 to obtain Egs.(4.15 and

(4.16), respectively. If X1,X5,X5 are the eigenvalues of a matiB¢ the symmetric

functions can be written in terms of traces of powerBpf
e.g.,
V. CONCLUSIONS

. ) » ) h,(x)=TrB,
In this paper we showed that various partition functions

for free (either noninteracting or those that interact through 1

one-body Hamiltoniansparticles can be written as a sum of hy(Xx) = E[Tr B2+ (TrB)?],
one or more group characters. This result is not surprising

since the partition function, being a trace, is invariant undet, 4 5o on.

the exchange of single-particle energies, hence it can be writ- 1,¢ elementary symmetric functions,(x), are defined

ten i_n terms_ of either elementary or complete symmetriqn a similar way except that n&, can be repeated in any
functions which form a complete basis for any function that, .4 ct. Again for three variables, x,,xs, the first few

is symmetric under the exchange of its variables. The resul slementary symmetric functions are
ing expressions are, however, very useful to simplify the

calculations of the partition functions for particles that carry a;=hg,
internal quantum numbers.

One should emphasize that our techniques, being combi- a,=X1 X+ X X3+ XoX3,
natorial in nature, can be used to describe particle multiplic-
ity distributions even in those situations where one does not a3=X1XoX3.

start from a partition function or even when temperature is ] )
not well defined. Such applications range from pion multi-One takesa,=0 if n>N and ap=ho=1. The generating
plicity distributions in heavy-ion collisioni8] (where a tem-  function fora, is given by

perature can be defined for a sysjgmfermion-pair produc- N

tion by a time-varying electric field24,25 (where the 1—x.7)= —1)"a(x)Z" A2
concept of temperature is not introduged i[[l( 2 ; (=Dan()z". (A2)

Note that, since the generating functions in EGsl) and
(A2) are inverses of each other one can whitein terms of

| thank Gernot Akemann and Bruce Barrett for bringinga;,i=1, ... k and vice versa. If one takes,i=1,... N to
several references to my attention. This work was supportede eigenvalues of aN X N matrix A, thenay(x) = detA and
in part by the U.S. National Science Foundation Grant Noay,;(X)=0=ay,,=""".
PHY-0070161 at the University of Wisconsin, in part by the
University of Wisconsin Research Committee with funds AppENDIX B: CHARACTER EXPANSION FORMULAS
granted by the Wisconsin Alumni Research Foundation, and
in part by the Alexander von Humboldt Stiftung. | am grate- In this appendix we summarize the character expansion
ful to the Max-Planck-Institut fu Kernphysik and H.A. formulas of Refs[16,17] and [18]. The representations of
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Weidenmtlier for the very kind hospitality. the U(N) group are labeled by a partition inth parts:
(ny,n,, ... Ny) Wheren;=n,=- - - =ny (see, for example,
APPENDIX A: SYMMETRIC EUNCTIONS Ref. [9]). We denote the eigenvalyes of the group eleniént
in the fundamental representation by,t,, ... ty. The
The complete homogeneous symmetric functibg(x), character(trace of the representation mairiaf the irreduc-
of degreen in the arguments;,i=1,... N, is defined as ible representation corresponding to the partition
the sum of the products of the variabbes takingn of them  (nq,n,, ... ,ny) of non-negative integers is given by
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X(nyny. ... (W) =dethy i), (B1)  where
where h,, is the complete symmetric function in the argu- my=n;—nj;q, j=1,... N=1 (B4)
mentst,, . ..ty of degreen. (For a review of its properties

see Appendix A. In these equations the arguments of thelf the sum ovem in the expression EqB2) we started with

determinants indicate théj(-th element of the matrix the is restricted to the non-negative valuesdf.e.,A,=0 when

determinant of which is calculated. n<0), thenny is non-negative and we can absorb the term
To obtain the character expansion of Rgf7] consider (detU)™ into the character to obtain

the power series expansion

N
G(x,t) = At (B2) (Il_ll G(X,ti))

wherex stands for all the parameters needed to specify the
coefficientsA,,. We assume that this series is convergent for ZHZO nZO o 'nE,O detAn, +i-)X(ny.ny, ... (V)
. . . . 1~ 2™ N~
[t|=1. GivenN differentt's which we take eigenvalues of (B5)
the matrixU: tq, ... ty, we write down the character ex-
pansion Eq. (2.17) of Ref.[17]] usingN copies of Eq(B2)  Note that the summation in EGB5) is over all irreducible
N representations of UN), but in Eq.(B4) it is restricted to
N o those representations where the number of boxes in the last

(inl G(X’t')) 2w 2 delAn;+i-)) row of the Young tableau is zerand an additional summa-
tion overny, which, in general, can take both positive and
----- 4 N)(U)’ (B3) negative values. For further details see R&].

m;=0 my=0 my_1=0 ny

X (detU) nN)((/l /s
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